Modulation features for noise robust speaker identification
نویسندگان
چکیده
Current state-of-the-art speaker identification (SID) systems perform exceptionally well under clean conditions, but their performance deteriorates when noise and channel degradations are introduced. Literature has mostly focused on robust modeling techniques to combat degradations due to background noise and/or channel effects, and have demonstrated significant improvement in SID performance in noise. In this paper, we present a robust acoustic feature on top of robust modeling techniques to further improve speakeridentification performance. We propose Modulation features of Medium Duration sub-band Speech Amplitudes (MMeDuSA); an acoustic feature motivated by human auditory processing, which is robust to noise corruption and captures speaker stylistic differences. We analyze the performance of MMeDuSA using SRI International’s robust SID system using a channel and noise degraded multilingual corpus distributed through the Defense Advance Research Projects Agency (DARPA) Robust Automatic Transcription of Speech (RATS) program. When benchmarked against standard cepstral features (MFCC) and other noise robust acoustic features, MMeDuSA provided lower SID error rates compared to the others.
منابع مشابه
AM-FM Based Robust Speaker Identification in Babble Noise
Speech babble is one of the most challenging noise interference due to its speaker/speech like characteristics for speech and speaker recognition systems. Performance of such systems strongly degrades in the presence of background noise, like the babble noise. Existing techniques solve this problem by additional processing of speech signal to remove noise. In contrast to existing works, the aim...
متن کاملRobust FHPD Features from Speech Harmonic Analysis for Speaker Identification
Speaker identification accuracy decreases significantly in the presence of additive noise. In this paper, we propose a robust speech feature extraction method, which is based on the harmonic structure of voiced segments. The robust features are composed of fundamental and harmonic peak data from short-time spectrum. These features are evaluated by thirty speaker data from TIMIT database and add...
متن کاملNoise Robust Speaker Identification Using Sub-Band Weighting in Multi-Band Approach
Recently, many techniques have been proposed to improve speaker identification in noise environments. Among these techniques, we consider the feature recombination technique for the multi-band approach in noise robust speaker identification. The conventional feature recombination technique is very effective in the band-limited noise condition, but in broad-band noise condition, the conventional...
متن کاملCodebook Design Method for Noise Robust Speaker Identification based on Genetic Algorithm
In this paper, a novel method of designing a codebook for noise robust speaker identification purpose utilizing Genetic Algorithm has been proposed. Wiener filter has been used to remove the background noises from the source speech utterances. Speech features have been extracted using standard speech parameterization method such as LPC, LPCC, RCC, MFCC, ΔMFCC and ΔΔMFCC. For each of these techn...
متن کاملSpectro-temporal modulation energy based mask for robust speaker identification.
Spectro-temporal modulations of speech encode speech structures and speaker characteristics. An algorithm which distinguishes speech from non-speech based on spectro-temporal modulation energies is proposed and evaluated in robust text-independent closed-set speaker identification simulations using the TIMIT and GRID corpora. Simulation results show the proposed method produces much higher spea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013